sábado, 23 de fevereiro de 2019



x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



 . A
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




Em Mecânica clássica mecânica quântica, a Fase geométricafase de Pancharatnam-Berry (em homenagem a S. Pancharatnam e Sir Michael Berry), fase de Pancharatnam ou mais comumente fase Berry, é uma diferença de fase adquirida ao longo de um ciclo, quando o sistema é submetido a um processo adiabático cíclico, que resulta das propriedades geométricas do espaço parâmetro do [[Hamiltoniano (mecânica quântica) | Hamiltoniano]. [1] O fenômeno foi descoberto pela primeira vez em 1956, [2] e redescoberto em 1984. [3] Ele pode ser visto no efeito Aharonov-Bohm e intersecção cônica de superfície de energia potencial. No caso de o efeito Aharonov-Bohm, o parâmetro adiabático é o campo magnético envolto por dois caminhos de interferência, e é cíclico no sentido que estes dois caminhos formar um loop. No caso de a intersecção cônica, os parâmetros adiabáticos são as coordenadas moleculares. Além da mecânica quântica, este fenômeno surge em uma variedade de outros sistemas ondulatórios, tais como ópticaclássica. Em geral, pode ocorrer sempre que existam, pelo menos, dois parâmetros que caracterizam uma onda na proximidade de algum tipo de singularidade ou buraco na topologia; dois parâmetros são necessários porque ou o conjunto de estados não singulares não será simplesmente conexo, ou terá holonomia não-trivial.
As ondas são caracterizadas por uma amplitude e uma fase, e ambas podem variar como uma função dos parâmetros da Hamiltoniana. A fase geométrica ocorre quando ambos os parâmetros são alterados simultaneamente, mas muito devagar (adiabaticamente), e ao final, são trazidos de volta à configuração inicial . Em mecânica quântica, isso poderia envolver rotações mas também translações das partículas, mas que são desfeitas no final. Seria de esperar que as ondas no sistema voltem ao estado inicial, caracterizado pela amplitude e fase. No entanto, se a mudança no espaço de parâmetros correspondem a um loop não trivial, ou seja, que não pode ser continuamente deformado na identidade, é possível que os estados iniciais e finais difiram por uma fase. Esta diferença é a fase geométrica e sua ocorrência geralmente indica que a dependência dos parâmetros por parte sistema é singular.
Para medir a fase geométrica em um sistema ondulatório, um experimento de interferência é necessário. O pêndulo de Foucault é um exemplo de mecânica clássica que, às vezes, é usado para ilustrar a fase geométrica . Este análogo mecânica da fase geométrica é conhecida como a ângulo de Hannay .

    Fase Berry na mecânica quântica

    Em um sistema quântico no n-ésimo auto-estado, uma evolução adiabática do Hamiltoniano muda o sistema de tal forma que ele permanece no n-ésimo auto-estado do Hamiltoniano, ao mesmo tempo, obtém um fator de fase. Esta tem uma contribuição da evolução temporal do estado e outro da variação do auto-estado do Hamiltoniano que varia no tempo. O segundo termo corresponde à fase de Berry e, para variações não cíclicas do Hamiltoniano, pode ser ignorada por uma escolha diferente da fase associados com as auto-estados do Hamiltoniano em cada ponto na evolução.
    No entanto, se a variação for cíclica, a fase Berry não pode ser cancelada e torna-se uma propriedade observável do sistema. A partir da equação de Schrödinger a fase de Berry  pode ser calculada por:[necessário esclarecer]
    onde  parametriza o processo adiabático cíclico. O sistema segue um caminho fechado  no espaço de parâmetros. Uma revisão recente sobre os efeitos de fase geométricas em propriedades eletrônicas foi dada por Xiao, Chang e Niu. [4] A fase geométrica ao longo do caminho fechado  também pode ser calculada integrando a curvatura de Berrysobre a superfície delimitada por .

    Exemplos de fases geométricas[editar | editar código-fonte]

    O pêndulo de Foucault[editar | editar código-fonte]

    Um dos exemplos mais fáceis é o pêndulo de Foucault. Uma explicação fácil em termos de fases geométricas é dada por von Bergmann e von Bergmann: [5]
    Como o pêndulo precessa quando se move ao longo de um caminho C geral? Para o transporte ao longo do equador, o pêndulo não precessa. [...] Agora, se C é composta de segmentos de geodésicas, a precessão virá toda dos ângulos onde os segmentos das geodésicas se encontram; a precessão total é igual ao défict de ângulo líquido, que por sua vez, é igual ao ângulo sólido envolto por C módulo 2π. Finalmente, podemos aproximar qualquer ciclo por uma sequência de segmentos geodésicas, de modo que o resultado mais geral (dentro ou fora da superfície da esfera) é que a precessão líquido é igual ao ângulo sólido envolto.
    Em outras palavras, não há forças de inércia que podem fazem o pêndulo precessionar, de modo que a precessão (em relação à direção de movimento do caminho ao longo do qual o pêndulo se move) é inteiramente devido à rotação deste caminho. Assim a orientação do pêndulo sofre um transporte paralelo. Para o pêndulo de Foucault original, o caminho é um círculo de latitude, e pelo teorema de Gauss-Bonnet, a diferença de fase é dada pelo ângulo sólido envolto.

    Luz polarizada em uma fibra óptica[editar | editar código-fonte]

    Um segundo exemplo é a luz linearmente polarizada que entra uma fibra óptica de um modo. Suponhamos que a fibra esteja ao longo de algum caminho no espaço e a luz sai da fibra no mesmo sentido que a sua entrada. Em seguida, comparam-se as polarizações inicial e final. Na aproximação semiclássica a fibras funciona como um guia de onda e o momento da luz é sempre tangente à fibra. A polarização pode ser pensada como uma orientação perpendicular ao momento. Ao logo do percurso da fibra, o vetor momento da luz percorre um caminho numa esfera no espaço de momentos. Esse caminho é fechado já que as direções inicial e final da luz coincidem, e a polarização é um vetor tangente à esfera. Indo para o espaço de momento, isso é equivalente a tomar o mapa de Gauss. Não há forças que poderiam fazer polarização girar, apenas a restrição de permanecer tangente à esfera. Assim, a polarização sofre um transporte paralelo e o desvio de fase é dado pelo o ângulo sólido (vezes o spin, que no caso de luz é 1).

    Fase geométrica definida em atratores[editar | editar código-fonte]

    Embora a formulação de Berry estava originalmente definida para sistemas lineares, Ning e Haken [6] logo perceberam que uma fase geométrica semelhante pode ser definida para sistemas completamente diferentes, tais como sistemas dissipativos não-lineares que possuem determinados atratores cíclicos. Eles mostraram que esses atratores cíclicos existem em uma classe de sistemas não-lineares dissipativas com certas simetrias.[7]

    Exposição em interseções de superfícies de potencial adiabático molecular[editar | editar código-fonte]

    Existem muitas formas de computar a fase geométrica em moléculas no paradigma de Born-Oppenheimer. Um jeito é através da “matriz  de acoplamento não adiabático”, definida por 
    onde  é a função eletrônica adiabática, dependente dos parâmetros nucleares . O acoplamento não-adiabático pode ser usado para definir uma integral de loop, análoga ao loop de Wilson (1974) da teoria de campos, desenvolvida independentemente para o caso molecular por M. Baer (1975, 1980, 2000). Dado um loop fechado , parameterizado por  onde  é um parâmetro e . A matriz D é dada por:
    (aqui,  é o símbolo de ordenamento de caminho). Pode ser provado que, uma vez que  é suficientemente grande, ou seja, um número grande de estados eletrônicos é considerado, essa matriz é diagonal, com elementos dados por , onde  são as fases geométricas associadas com o loop para o estado adiabático eletrônico  .
    Para Hamiltonianos com simetria de reversão temporal, a fase geométrica reflete o número de interseções cônicas envoltas pelo loop. Mais precisamente:
    onde  é o número de interseções cônicas envolvendo o estado adiabático  envoltas pelo loop .
    Uma alternativa para a abordagem da matriz D seria um cálculo direto da fase Pancharatnam. Isso é especialmente útil se apenas a fase geométrica de um único estado adiabático é de interesse. Nessa abordagem, deve-se tomar um número  de pontos  ao longo do loop  com  e , e então usar apenas o j-ésimo estado adiabático  computa o produto de Pancharatnam dos “overlaps”:
    No limite  tem-se (Ver Ryb & Baer 2004 para explicações e aplicações):

    Fase geométrica e a quantização do movimento cyclotron[editar | editar código-fonte]

    Um elétron sujeito a um campo magnético  se move numa órbita circular (cyclotron)[1]. Classicamente, qualquer raio  de cyclotron é aceito. Já na mecânica quântica, apenas alguns níveis de energia, chamados de níveis de Landau são permitidos e já que  está relacionado com a energia do elétron, isso corresponde a valores quantizados de . A condição de quantização de energia obtida ao resolver a equação de Schrödinger é, por exemplo,  para elétrons livres ou  para elétrons no grafeno onde .[2] Apesar da derivação esses resultados não ser difícil, há uma forma alternativa de mostrá-los que dá uma intuição física sobre os níveis de Landau. Essa forma alternativa é baseada na condição semiclássica da condição de quantização de Bohr-Sommerfeld
    que inclui a fase geométrica  adquirida pelo elétron quando ele executa seu movimento no espaço real ao longo do loop fechado da órbita do cyclotron.[8] Para um elétron livre,  enquanto  para elétrons no grafeno. Acontece que a fase geométrica está diretamente ligada  do elétron livre e a  para o elétron no grafeno.









    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].